Highly Enhanced Luminescence from Single-Crystalline C60'**1***m***-xylene Nanorods**

Lin Wang, Bingbing Liu,* Shidan Yu, Mingguang Yao, Dedi Liu, Yuanyuan Hou, Tian Cui, and Guangtian Zou

*National Laboratory of Superhard Materials, Jilin Uni*V*ersity, Changchun 130012, China*

Bertil Sundqvist

*Department of Physics, Umeå Uni*V*ersity, S-90187 Umeå, Sweden*

Han You, Dingke Zhang, and Dongge Ma

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China

*Recei*V*ed April 29, 2006. Re*V*ised Manuscript Recei*V*ed June 20, 2006*

Single-crystalline C₆₀'1*m*-xylene nanorods with a hexagonal structure were successfully synthesized by evaporating a C_{60} solution in *m*-xylene at room temperature. The ratio of the length to the diameter of the nanorods can be controlled in the range of \approx 10 to over 1000 for different applications. The photoluminescence (PL) intensity of the nanorods is about 2 orders of magnitude higher than that for pristine C₆₀ crystals in air. Both UV and Raman results indicate that there is no charge transfer between C_{60} and *m*-xylene. It was found that the interaction between C_{60} and *m*-xylene molecules is of the van der Waals type. This interaction reduces the icosahedral symmetry of C_{60} molecule and induces strong PL from the solvate nanorods.

Introduction

Doped fullerenes have attracted much attention since the doping can alter the charge distributions, the electronic structures, and the energy gaps between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) of the parent fullerenes.^{1,2} Furthermore, doping might reduce the icosahedral symmetry of C_{60} molecule, making previously forbidden electronic transitions in pristine C_{60} allowed.³⁻⁶ In this way the properties of C_{60} can be tuned by doping various components. As a kind of doped C_{60} , C_{60} solvates have also attracted much attention recently from many researchers due to these points.⁷⁻²³ Many

- Glarum, S. H.; Palstar, T. T.; Ramirez, A. P.; Kotran, A. R. *Nature* **1991**, *350*, 600.
- (2) Haddon, R. S.; Hebard, A. F.; Rosseinsky, M. J.; Murphy, D. W.; Duclos, S. J.; Lyons, K. B.; Miller, B.; Rosamilia, J. M.; Fleming, R. M.; Kotran, A. R.; Glarum, S. H.; Makhija, A. V.; Muller, A. J.; Eick, R. H.; Zahurak, S. M.; Tycko, R.; Dabbagh, G.; Thiel, F. A. *Nature* **1991**, *350*, 320.
- (3) Wang, Y.; Holden, J. M.; Rao, A. M.; Eklund, P. C.; Venkateswaran, U. D.; Eastwood, DeLyle; Lidberg, R. L.; Dresselhaus, G.; Dresselhaus, M. S. *Phys. Re*V*. B* **¹⁹⁹⁵**, *⁵¹*, 4547.
- (4) Wang, Y. *J. Phys. Chem.* **1992**, *96*, 764.
- (5) Sassara, A.; Zerza, G.; Chergui, M. *J. Chem. Phys.* **1997**, *107*, 8731.
- (6) Zhao, Y.; Fang, Y. *J. Phys. Chem. B* **2004**, *108*, 13586.
- (7) Grey, I. E.; Hardie, M. J.; Ness, T. J.; Raston, C. L. *Chem. Commun.* **1999**, 1139.
- (8) Talyzin, A.; Jansson, U. *J. Phys. Chem. B* **2000**, *104*, 5064.
- (9) Michaud, F.; Barrio, M.; López, D. O.; Tamarit, J. Ll.; Agafonov, V.; Toscani, S.; Szwarc, H.; Ce´olin, R. *Chem. Mater.* **2000**, *12*, 3595.
- (10) Barrio, M.; López, D. O.; Tamarit, J. Ll.; Espeau, P.; Céolin, R.; Allouchi, H. *Chem. Mater.* **2003**, *15*, 288.

solvents, including benzene, $12-14$ *n*-pentane, 15 hexane, 16 *n*heptane,¹⁷ CS_2 ,^{18,19} and 1,1,2-trichloroethane (CH₃CCl₃)⁹ have been investigated. It is found that the incorporation of guest molecules into the host C_{60} lattice changes the crystal structure. For example, C_{60} crystals grown in cyclohexane crystallize in the cubic system,²⁰ C₆₀ crystals with CS_2^{19} or *n*-pentane¹⁵ have orthorhombic structures, and C_{60} solvates grown from benzene^{14,21} or *n*-heptane¹⁷ have a hexagonal

- (11) Céolin, R.; Tamarit, J. L.; Barrio, M.; López, D. O.; Espeau, P.; Allouchi, H.; Papoular, R. J. *Carbon* **2005**, *43*, 417.
- (12) Bürgi, H. B.; Restori, R.; Schwarzenbach, D.; Balch, A. L.; Lee, J. W.; Noll, B. C.; Olmstead, M. M. *Chem. Mater.* **1994**, *6*, 1325.
- (13) He, H.; Barras, J.; Foulkes, J.; Klinowski, J. *J. Phys. Chem. B* **1997**, *101*, 117.
- (14) Meidine, M. F.; Hitchcock, P. B.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. *J. Chem. Soc., Chem. Commun.* **1992**, 1534.
- (15) Pekker, S.; Faigel, G.; Fodor-Csorba, K.; Gránásy, L.; Jakab E.; Tegze, M. *Solid State Commun.* **1992**, *83*, 423.
- (16) Toscani, S.; Allouchi, H.; Tamarit, J. L.; López, D. O.; Barrio, M.; Agafonov, V.; Agafonov, V.; Rassat, A.; Szwarc, H.; Céolin, R. *Chem Phys. Lett.* **2000**, *330*, 491.
- (17) Ceolin, R.; Agrafonov, V.; Bachet, B.; Gonthiervassal, A.; Szwarc, H.; Toscani, S.; Keller, G.; Fabre, C.; Rassat, A. *Chem. Phys. Lett.* **1995**, *244*, 100.
- (18) Shi, X. D.; Kortan, A. R.; Williams, J. M.; Kini, A. M.; Savall, B. M.; Chaikin, P. M. *Phys. Re*V*. Lett.* **¹⁹⁹²**, *⁶⁸*, 827. (19) Kikuchi, K.; Suzuki, S.; Saito, K.; Shiromaru, H.; Zakhidov, A. A.;
- Ugawa, A.; Imaeda, K.; Inokuchi H.; Yakushi, K. *Physica C* **1991**, *415*, 185.
- (20) Gorun, S. M.; Creegan, K. M.; Sherwood, R. D.; Cox, D. M.; Day, V. W.; Day, C. S.; Upton, R. M.; Briant, C. E. *J. Chem. Soc., Chem. Commun.* **1991**, 1556.
- (21) Balch, A. L.; Lee, J. W.; Noll, B. C.; Olmstead, M. M. *J. Chem. Soc., Chem. Commun*. **1993**, 56.
- (22) Graja, A.; Swietlik, R. *Synth. Met.* **1995**, *70*, 1417.
- (23) Swietlik, R.; Byszewski, P.; Kowalska, E. *Chem. Phys. Lett.* **1996**, *254*, 73.

10.1021/cm060997q CCC: \$33.50 © 2006 American Chemical Society Published on Web 07/20/2006

^{*} Corresponding author. E-mail: liubb@jlu.edu.cn. Tel: $+86-431-5168256$.
Fax: $+86-431-5168883$. Fax: +86-431-5168883. (1) Hebard, A. F.; Rosseinsky, M. J.; Haddon, R. C.; Murphy, D. W.;

lattice. In addition, it is most interesting that different shapes of solvate crystals form from different solvents. Taking 1,1,2 trichloroethane and bromotrichloromethane (BrCCl₃) as examples, the C_{60} 1:1 solvate formed with 1,1,2-trichloroethane⁹ shows a needlelike shape with a polyhedral cross section, but C_{60} $2BrCl₃$ ¹⁰ shows interpenetrating hexagonal
single crystals, thus indicating that the polymorphism of C_{60} single crystals, thus indicating that the polymorphism of C_{60} is solvent-dependent. Furthermore, the doping with guest molecules can also change the vibrational properties and thus the Raman and IR (infrared absorption) spectra of C_{60} . For example, compared to those of pristine C_{60} , some of the original peaks shifted and new peaks appeared in the Raman spectra of C_{60} solvates formed in solvents such as benzene and toluene.⁸ Graja et al. reported that the guest molecules can also hinder the rotation of C_{60} molecules which leads to a decrease of vibrational-rotational couplings.^{22,23} It is therefore very interesting to study the solvent-dependent polymorphism and the properties of C_{60} solvates formed with various solvents.

Another recent development is that one-dimensional nanostructures such as wires, rods, and tubes have become the focus of intensive research owing to their potential applications in electronic, optoelectronic, and electromechanical devices with nanometer scale dimensions as interconnects and/ or functional units. $24-27$ In addition, the photoluminescence of C60 solvates has rarely been studied before. Combining our interests in the potential applications of one-dimensional materials with our interest in the solvent-dependent polymorphism and photoluminescence properties of C_{60} solvates, we have made efforts to synthesize one-dimensional crystals of C_{60} solvates. In this paper we present the synthesis of single-crystalline C_{60} ⁻1 *m*-xylene rods on a large scale. All the obtained samples are rod shaped with dimensions in the nanometer range. A photoluminescence (PL) study shows that C_{60} ^{\cdot}1*m*-xylene nanorods have a strong luminescence which gives potential applications in the optical field.

Experimental Section

The nanorods of C_{60} ^{\cdot}1*m*-xylene were synthesized by evaporating a solution of C₆₀ in *m*-xylene at room temperature. The nanorods can grow on various substrates such as glass and silicon, which do not react chemically with the solvent and C_{60} . After the evaporation, C60'1*m*-xylene solvated nanorods with diameters ranging from less than 50 nm to hundreds of nanometers were found on the substrate surface. In contrast to the pure solvent-free C_{60} rod-shaped crystals reported previously,28 the present as-grown nanorods contain *m*-xylene in the molar ratio C_{60} : $C_8H_{10} = 1:1$. The obtained nanorods were characterized by means of scanning electron microscopy (SEM, SSX-550 Saimadzu, Japan), infrared spectroscopy (IR, Nicolet Avatar 370 DTGS), thermogravimetric analysis (TGA, Perkin-Elmer), X-ray diffraction (XRD, Rigaku D/max-RA), and transmission electron microscopy (TEM, JEM-2010, Japan). The PL and Raman spectra of the nanorods and pristine C_{60} were

Figure 1. SEM images of as grown $C_{60} \cdot 1m$ -xylene nanorods produced by evaporation of a saturated solution of C_{60} in *m*-xylene: (A) many C_{60} ⁻¹*m*xylene nanorods grow on a silicon substrate; (B) in large magnification.

Figure 2. IR spectrum of the $C_{60} \cdot 1m$ -xylene nanorods.

detected by a Raman spectrometer (Renishaw inVia, U.K.) with either a 514.5 nm or a 830 nm laser as excitation. The ultravioletvisible (UV) absorption spectra were measured with a UV spectrometer (UV-3150, Saimadzu, Japan) to study the electronic states of the nanorods. All measurements were carried out at room temperature.

Results and Discussion

A representative morphological study of the nanorods is presented in Figure 1. Figure 1A,B shows SEM images. It is found that the as-grown samples are rod-shaped with diameters in the range of nanometers. The average length is tens of micrometers. It is seen that there is no physical contact between individual nanorods, which is a large benefit for future separation, operation, and applications in the field of nanometer scale devices.

IR spectroscopy has been carried out to study whether the nanorods consist of C_{60} solvate. Figure 2 shows the IR spectrum of the nanorods. There are five obvious absorption peaks in the studied range. The absorption peak at about 770 cm^{-1} is found to belong to the solvent, thus indicating the presence of solvent in the as-grown nanorods. The other four absorption peaks with positions at 526, 576, 1182, and 1428 cm^{-1} are from C_{60} . This indicates that the as-grown nanorods are not only made from C_{60} but also contains some solvent, suggesting that they are C_{60} solvates.

⁽²⁴⁾ Hong, S. H.; Zhu, J.; Mirkin, C. A. *Science* **1999**, *286*, 532.

⁽²⁵⁾ Hu, J.; Odom, T. W.; Lieber, C. M. *Acc. Chem. Res.* **1999**, *32*, 435. (26) Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates,

B.; Yin, Y. D.; Kim, F.; Yan, H. Q. *Ad*V*. Mater.* **²⁰⁰³**, *¹⁵*, 353.

⁽²⁷⁾ Wang, Z. L. *Ad*V*. Mater.* **²⁰⁰⁰**, *¹²*, 1295.

⁽²⁸⁾ Wang, L.; Liu, B. B.; Liu, D. D.; Yao, M. G.; Hou, Y. Y.; Yu, S. D.; Cui, T.; Li, D. M.; Zou, G. T.; Iwasiewicz, A.; Sundqvist, B. *Ad*V*. Mater.* **2006**, *18*, 1883.

Figure 3. TGA curve and its time derivative of the C_{60} **1***m*-xylene nanorods.

Figure 4. XRD pattern of the C_{60} **1***m*-xylene nanorods.

Thermogravimetry analysis (TGA), with the temperature ramped from 30 to 800 °C at a rate of 5 °C/min in an Ar atmosphere, was employed to determine the stoichiometry of the C_{60} solvate and to study the thermal behavior of the solvate nanorods. The TGA curve and its time derivative are shown in Figure 3. Clearly, there are two mass loss regions in the studied range of temperature. From a careful analysis of the curves, it is found that the first mass loss starts at about 60 °C. This indicates that the solvate of C_{60} is stable at temperatures lower than 60 °C. This is an advantage for applications at room temperature. Moreover, the mass loss rate has a maximum as the temperature reaches about 112 °C which is close to the boiling temperature of m -xylene (135 \degree C), indicating that this mass loss is due to the evaporation of *m*-xylene. In the high-temperature region the mass loss rate has a second maximum at about 590 °C which is close to the sublimation temperature of C_{60} under ambient pressure. This indicates that the second mass loss comes from the sublimation of C_{60} . It is also found that the mass loss of the solvent corresponds to about 11.4% of the total weight which is close to the ideal value (12.8%) for the C_{60} : $C_8H_{10} = 1:1$ molar ratio, suggesting the sample is C_{60} \cdot 1*m*-xylene.

To confirm the structure of the nanorods, we carried out an X-ray diffraction (XRD) study. The XRD pattern of the as grown nanorods measured at room temperature is shown in Figure 4. This pattern shows that the structure of the nanorods is different from the fcc structure of pure C_{60} . The structure has been indexed by a hexagonal system with cell

Figure 5. TEM image with HRTEM inset of the C_{60} $1m$ -xylene nanorods.

dimensions $a = 2.376$ nm and $c = 1.008$ nm ($a/c = 2.357$), which is similar to that reported by Ramm et al. for bulk crystals obtained by slowly evaporating an *m*-xylene solution of C₆₀ (P6₃ space group, $a = 2.369(4)$ nm and $c = 1.0046(2)$ nm at 100 K).²⁹ Their simulations indicate that the solvent molecules are placed at the 3-fold axis and near the $6₃$ screw axis. We further used high-resolution transmission electron microscopy (HRTEM) to study a single nanorod to determine the crystal structure details, such as the growth direction of the nanorods, in detail. A TEM image with a HRTEM image as inset is shown in Figure 5. Again, C_{60} nanorods with dimensions in the nanometer range are observed. The HRTEM image shows that the synthesized C_{60} nanorods are single-crystalline. The lattice spacing of about 1.17 nm between adjacent lattice planes in the image corresponds to the distance between two (110) crystal planes in the structure indexed by the XRD, showing that the axial direction (001) is the preferred growth direction for the as-grown C_{60} solvated nanorods.

We tried to synthesize C_{60} solvate nanorods on various substrates such as glass, silicon, diamond, and metals, including iron, copper, and molybdenum, by evaporating the solution of C_{60} in *m*-xylene at room temperature. Similar nanorods were observed by SEM and TEM to grow on all these substrates, thus indicating that the growth is independent of substrates which is an advantage for potential applications in nanometer scale devices on different substrates.

The PL spectra of the samples were measured under ambient conditions. To avoid the photopolymerization of C_{60} , the irradiation power in the focus spot was kept below $1 \mu W$, which corresponds to an average power density of \approx 10 mW/ $mm²$. For comparison, pristine C_{60} was studied under the same conditions. The PL spectra of both the nanorods and pristine C_{60} are shown in Figure 6A. The PL spectrum of pristine C_{60} was multiplied by 2 and is in good agreement with previous reports on pristine $C_{60}^{3,30-32}$ From the

- (30) Rao, A. M.; et al. *Appl. Phys. A* **1997**, *64*, 231.
- (31) Zhao, T. N.; Liu J. Q.; Li, Y. L.; Zhu, D. B. *Appl. Phys. Lett.* **1992**, *61*, 1028.
- (32) Bashkin, I. O.; et al. *Chem. Phys. Lett.* **1997**, *272*, 32.

⁽²⁹⁾ Ramm, M.; Luger, P.; Zobel, D.; Duczek, W.; Boeyens, J. C. A. *Cryst. Res. Technol.* **1996**, *31*, 43.

Figure 6. (A) PL spectra of the $C_{60} \cdot 1m$ -xylene nanorods and pristine C_{60} powder. Note that the PL spectrum of pristine C_{60} powder is multiplied by 2. (B) Raman spectrum (near the $A_g(2)$ mode) of the same rods, measured at the same spot immediately after the measurements of the PL spectra.

comparison, it is obvious that the PL intensity of the nanorods is about 2 orders of magnitude higher than for pristine C_{60} crystals in air, indicating that the doping by *m*-xylene greatly enhances the luminescence of C_{60} . Except for the strong intensity the PL spectrum of the nanorods has features similar to those of pristine C_{60} , and there is no shift in the PL spectrum of the solvates compared to pristine C_{60} . This suggests that the strong luminescence originates from C_{60} itself. It is seen that the PL spectrum contains two emission bands which are known as the zero-phonon line (ZPL), corresponding to a direct exciton-polaron recombination, and a phonon replica, "P-PL", respectively.^{33,34} According to previous works, the ZPL emission band is attributed to an exciton-polaron recombination in C_{60} .^{33,34} Furthermore, it is well-known that the photopolymerization of C_{60} will it is well-known that the photopolymerization of C_{60} will change the PL properties of C_{60} . So, to test whether photopolymerization occurs during the PL measurements, the Raman spectrum of the rods in the vicinity of the $A_g(2)$ mode was measured at the same spots immediately after the detections of PL spectra. The Raman spectrum (Figure 6B) shows that the $A_g(2)$ mode of the rod is located at 1469 cm⁻¹ indicating that the sample is not polymeric C_{60} . This suggests

Figure 7. UV absorption of the C_{60} solvate rods, pristine C_{60} , and *m*-xylene.

that the enhancement of the PL spectra is attributed to the doping by *m*-xylene.

The UV absorption spectrum has been measured by using an integrating sphere to study the electronic states of the solvate. For comparison, pristine C_{60} and m -xylene have also been studied under the same conditions. The UV spectra of the solvates, pristine C_{60} , and *m*-xylene are shown in Figure 7. The UV absorption spectrum we obtained for pristine C_{60} is consistent with that of previous reports.^{3,35} In a comparison with the absorption spectrum of pristine C_{60} , a new absorption band at about 4.1 eV (asterisk) is present in the UV absorption spectrum. This position is close to the absorption edge of *m*-xylene, suggesting the absorption is the contribution from *m*-xylene. Once more, the obtained nanorods prove to be solvated C_{60} . In addition, there is no obvious shift of the absorption bands between pristine and solvated C_{60} , indicating that the effect of doping by *m*-xylene on the electronic state of the C_{60} molecules is too small to detect with UV spectroscopy. A comparison of the two UV spectra shows that the absorption coefficient of the C_{60} solvate is larger than that of pristine C_{60} , indicating a higher quantum yield for C_{60} solvate. We also measured the quantum yield of the as-grown nanorods by using an integrating sphere. The quantum yield of the nanorods is 2.0×10^{-3} , which is about $1-2$ orders of magnitude higher than reported earlier for C_{60} .^{4,36,37}

It is known that the fluorescence quantum yield of C_{60} is very low due to symmetry restrictions.³⁻⁶ However, environmental effects, for example, the doping effect, could relax the selection rules by reducing the symmetry of C_{60} and lead to a high fluorescence radiation rate. For the purpose to make clear how the *m*-xylene molecules enhance the PL of the solvates, Raman spectroscopy with a 830 nm wavelength laser as excitation was employed to study the lattice vibrations of a solvate grown on silicon substrate. The Raman spectrum is shown in Figure 8. The peak located at 520 cm^{-1} is the contribution from silicon, showing that the obtained spectrum is reliable. The 10 Raman active modes of C_{60} have

(37) Catalh J.; Elguerot, J. *J. Am. Chem. Soc.* **1993**, *115*, 9249.

⁽³³⁾ Leach, S.; Vervloet, M.; Deprès, A.; BreH heret, E.; Hare, J. P.; Dennis, T. J.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. *Chem. Phys.* **1992**, *160*, 451.

⁽³⁴⁾ Capozzi, V.; Trovato, T.; Berger, H.; Lorusso, G. F. *Carbon* **1997**, *35*, 763.

⁽³⁵⁾ Kazaoui, S.; Ross, R.; Minami, N. *Solid State Commun.* **1994**, *90*, 623.

⁽³⁶⁾ Sun, Y. P.; Wang, P.; Hamilton, N. B. *J. Am. Chem. Soc.* **1993**, *115*, 6378.

Figure 8. Raman spectrum of the C_{60} solvate rods.

been pointed out. Obviously, the $A_g(2)$ mode, one of the modes most sensitive to charge transfer in C_{60} , is located at 1469 cm⁻¹, the same position as in pristine C_{60} , indicating the absence of charge transfer in the compound. In addition, it is also found that there are some unknown peaks with positions at 304, 341, 353, and 535 cm^{-1} present. Furthermore, in comparison with the spectrum of pure C_{60} , the H_g(1) (272 cm^{-1}) and A_g(1) (496 cm⁻¹) modes in this spectrum shift to 269 and 494 cm^{-1} , respectively. Similar shifts and new peaks have also been found in the Raman spectra of C_{60} solvates formed with toluene and hexane.⁸ They were attributed to the presence of the guest molecules, lattice disorder, and weak van der Waals interactions between the C_{60} molecules and the solvents, which all reduce the symmetry of the C_{60} lattice.

It is clear now that a van der Waals interaction is present between C_{60} and *m*-xylene molecules in the C_{60} solvate nanorods and that this reduces the icosahedral symmetry of the C_{60} molecule. The electric-dipole transitions which were forbidden in pristine C_{60} due to the high symmetry are allowed in this lower symmetry. As a result the quantum yield and PL intensity are enhanced greatly.

Conclusion

In summary we successfully synthesized single-crystalline C60'1*m*-xylene nanorods with a hexagonal structure. The ratio of the length to the diameter of the nanorods can be controlled in the range of \approx 10 to over 1000 for different applications. Both UV and Raman results indicate that there is no charge transfer between C_{60} and m -xylene. The interaction between C₆₀ and *m*-xylene molecules is of the van der Waals type. This interaction reduces the icosahedral symmetry of C_{60} molecule and induces strong PL from the solvate nanorods. The PL intensity of the nanorods is about 2 orders of magnitude higher than that for pristine C_{60} crystals in air.

Acknowledgment. This work was supported financially by the NSFC (Grant Nos. 10144004, 10204010, and 10574053), the RFDP (Grant No. 20020183050), the Trans-Century Training Program Foundation for the Talents, the Cultivation Fund of the Key Scientific and Technical Innovation Project (Grant No. 2004-295) of MOE of China, the National Basic Research Programm of China (Grant No. 2005CB724400), the Project for Scientific and Technical Development of Jilin province, and also by an exchange grant from the Swedish Research Council through the SIDA-Swedish Research Links exchange program.

CM060997Q